

Current, Resistance and Potential Difference Answers

Potential difference can be calculated using the equation:

potential difference = current × resistance

1. What is the potential difference if a current of 3A flows through a resistance of 20Ω ?

potential difference = 3 × 20

= 60

potential difference = **60**V

2. A current of 150mA passes through a 10Ω resistor.

Calculate the potential difference across the resistor.

 $\frac{150\text{mA}}{1000}$ = 0.15A

potential difference = 0.15 × 10

= 1.5

potential difference = **1.5**V

3. Figure 1 shows a series circuit.

Calculate the potential difference across the battery.

15 + 30 = 45Ω

potential difference = 0.2 × 45

potential difference = **9**V

Current, Resistance and Potential Difference **Answers**

4. A 6V battery is connected across a filament lamp with a resistance of 40Ω .

Calculate the current through the lamp.

 $6 = \text{current} \times 40$ $\text{current} = \frac{6}{40}$ = 0.15A

current = **0.15**A

5. A 1.5V battery is connected across a 50Ω resistor.

Calculate the current through the resistor.

Give your answer in mA.

1.5 = current × 50

= 0.03A

0.03 × 1000 = 30mA

current = **30**mA

6. **Figure 2** shows a parallel circuit.

The potential difference across the battery is 6V.

Calculate the current through the 20Ω resistor.

 $6 = current \times 20$ $current = \frac{6}{20}$ = 0.3A

current = **0.3**A

7. A 12V battery causes a current of 3A to flow through a circuit.

Calculate the resistance of the circuit.

 $12 = 3 \times \text{resistance}$ resistance $= \frac{12}{3}$ $= 4\Omega$

resistance = $\mathbf{4}\Omega$

8. A potential difference of 6V causes a current of 200mA to flow through a circuit.

Calculate the resistance of the circuit.

 $\frac{200\text{mA}}{1000} = 0.2\text{A}$ 6 = 0.2 × resistance resistance = $\frac{6}{0.2}$ = 30 Ω

resistance = 30Ω

9. **Figure 3** shows a parallel circuit.

The potential difference across the battery is 9V.

Calculate the resistance of resistor **X**.

9 = 2 × resistance

resistance = $\frac{9}{2}$ = 4.5 Ω

BEYOND SCIENCE

resistance = 4.5Ω

10. A student set up the circuit in **Figure 4**.

Describe how the student could use the circuit in **Figure 4** to investigate how the current through the lamp affects its resistance.

Mark Scheme	Mark
Level 3: There is a clear and logically ordered description of the method that could be followed to obtain valid results.	5-6
Level 2: There is a clear description of a method that may not produce valid results.	3-4
Level 1: There are simple statements that give a brief description of parts of the method. Two marks can be awarded for two correct statements.	1-2
No relevant content.	0
Indicative content:	
An ammeter is used to measure current.	
• A voltmeter is used to measure potential difference.	
• The resistance of the variable resistor is altered to change the current in the circuit or change the potential difference across the lamp.	
• Five or more different values for current have been used (to allow for a valid conclusion).	
 resistance = potential difference current 	
Repeats of each value of current are taken.	
• A mean is calculated.	