Areas of triangles and parallelograms Support

1	а	16cm^2 and 8cm^2	b	20 cm ² and 10 cm ²	С	32 cm ² and 16 cm ²
2	а	12 cm ²	b	6 cm ²	С	15 cm ²
3	а	18 cm ²	b	28 cm ²	С	40 cm ²

Core

4	а	Half the base multiplied by the height	b	$A = \frac{1}{2}bh$
---	---	--	---	---------------------

- **5 a** 168 mm² **b** 9.6 cm²
- **6** A = bh
- **7 a** 60 cm^2 **b** 1300 mm^2

Depth

- 8 Students draw and label 5 right-angled triangles: 36 cm by 1 cm, 18 cm by 2 cm, 12 cm by 3 cm, 9 cm by 4 cm and 6 cm by 6 cm. You know you have drawn them all when you have used all the factor pairs of 36 as side lengths.
- **9 a** 10 cm
 - **b** No, as we do not know either of the other two lengths; there are multiple possible triangles that have that base and perpendicular height.
- **10 a** 6 cm **b** 12.8 cm
- **11** $14 \times 6 = 84 \text{ cm}^2 \text{ and } 7 \times 12 = 84 \text{ cm}^2$

