Answers

Activity 1: Algebra worksheet

$1: 6 m+4 n=30$.

Total number of people	If $m=?$	Then $n=?$
30	1	6
30	2	$4 \cdot 5$
30	3	3
30	4	$1 \cdot 5$
30	5	0

The combinations of tables which give exactly 30 seats are:
1×6 seater and 6×4 seater
3×6 seater and 3×4 seater
5×6 seater and no 4 seater
2 : There are 23 chickens and 12 rabbits in the field.
3.a: Five possible solutions are:
$a=1, b=8$;
$a=2, b=6$;
$a=3, b=4 ;$
$a=4, b=2$;
$a=5, b=0 ;$

Five possible solutions are:
$c=10, d=0 ;$
$c=11, d=0.5$;
$c=12, d=1$;
$c=13, d=1.5$;
$c=14, d=2$
3 b: For the equation $x+30=y-70$, the pattern is that y is always 100 more than x.
For the equation $20 s=100-2 t$, the pattern is that as s increases by $1, t$ decreases by 10 .
Using a table to find solutions will make it easier to spot these patterns.

Activity 2: Solving equations worksheet

1. Two possible solutions:
$3 \times 5 p$ and $5 \times 2 p$
$1 \times 5 p$ and $10 \times 2 p$
25 p could also be made using 5×5 p coins but this would not satisfy the question since Alex also has $2 p$ coins.
2. Assuming lengths are whole numbers, there are six possible solutions:
$a=1 \mathrm{~cm}, b=11 \mathrm{~cm}$ (area $=11 \mathrm{~cm}^{2}$)
$a=11 \mathrm{~cm}, b=1 \mathrm{~cm}$ (area $=11 \mathrm{~cm}^{2}$)
$a=2 \mathrm{~cm}, b=10 \mathrm{~cm}$ (area $=20 \mathrm{~cm}^{2}$)
$a=10 \mathrm{~cm}, b=2 \mathrm{~cm}$ (area $=20 \mathrm{~cm}^{2}$)
$a=3 \mathrm{~cm}, b=9 \mathrm{~cm}$ (area $=27 \mathrm{~cm}^{2}$)
$a=9 \mathrm{~cm}, b=3 \mathrm{~cm}$ (area $=27 \mathrm{~cm}^{2}$)
