Bitesize

The chemical composition of stars

- ELYSE Ooh, I've got this game! What level are you on at the moment?
- DYLAN I'm now on *The Fish Tank Fiasco*.
- ELYSE Ooh, I haven't done that one. What clues do you have so far?
- DYLAN Not much. I've got a fingerprint, and I found a scrap of paper that says follow the rainbow.

I just... what do rainbows have to do with fingerprints?

ADA Searching rainbow fingerprint...

Each star leaves a unique fingerprint in the light spectrum, that tells us what it is made of.

- ELYSE How?
- ADA Well, Elyse, when light travels through an element in a star's atmosphere, the element leaves a unique pattern in the light spectrum. This pattern is the fingerprint of the element.
- ELYSE How does it know my name?
- ADA As light travels from a star, certain wavelengths of light get absorbed by the specific gases in the star's atmosphere.

When that star's light arrives on Earth and we split that light using a prism, we should see a full spectrum of all the colours of the rainbow. But we don't. Instead, we see that parts of the spectrum are missing, in a specific pattern – a fingerprint in the rainbow. This is called the absorption spectrum.

Bitesize

Scientists have tested in laboratories which elements leave which fingerprints in the spectrum. We can then line these up with a star's absorption spectrum, and this will reveal what elements are present in that star.

Guys? Hello?

Oh, I see...

The outside is overrated.