Calculate, Compare and Order

I can calculate and compare the volume of cubes and cuboids.
000

1. Calculate the volume of each shape, then use $<$, $>$ or $=$ to compare them.

2. In these pairs, the measurements are in different units. Before comparing them, make sure you have converted the measurements to the same unit.

3. Give the dimensions of a cube or cuboid that would be between the volumes of the two cuboids shown.

4. A cuboid has a volume of $120 \mathrm{~cm}^{3}$. Two identical cubes have sides measuring 4 cm . Which has the greater volume, the cuboid or the two cubes? Show how you worked out the answer.

Calculate, Compare and Order Answers

1. Calculate the volume of each shape, then use $<,>$ or $=$ to compare them.

a) volume $=180 \mathrm{~cm}^{3}$	$<$	volume $=704 \mathrm{~cm}^{3}$
b) volume $=432 \mathrm{~m}^{3}$	$<$	volume $=800 \mathrm{~m}^{3}$
c) volume $=360 \mathrm{~cm}^{3}$	$=$	volume $=360 \mathrm{~cm}^{3}$
d) volume $=952 \mathrm{~m}^{3}$	$>$	volume $=840 \mathrm{~m}^{3}$

2. In these pairs, the measurements are in different units. Before comparing them, make sure you have converted the measurements to the same unit.

a) volume $=216 \mathrm{~cm}^{3}$ or $216000 \mathrm{~mm}^{3}$	$>$	volume $=133 \mathrm{~cm}^{3}$ or $133000 \mathrm{~mm}^{3}$
b) volume $=195 \mathrm{~cm}^{3}$ or $195000 \mathrm{~mm}^{3}$	$<$	volume $=252 \mathrm{~cm}^{3}$ or $252000 \mathrm{~mm}^{3}$

3. Give the dimensions of a cube or cuboid that would be between the volumes of the two cuboids shown.
Dimensions of cube or cuboid, which give a volume greater than $144 \mathrm{~cm}^{3}$ and less than $300 \mathrm{~cm}^{3}$, e.g. $11 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$ or $10 \mathrm{~cm} \times 6 \mathrm{~cm} \times 3 \mathrm{~cm}$.
4. A cuboid has a volume of $120 \mathrm{~cm}^{3}$. Two identical cubes have sides measuring 4 cm .

Which has the greater volume, the cuboid or the two cubes? Show how you worked out the answer.
cube $=4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}=64 \mathrm{~cm}^{3}$
2 cubes $=64 \mathrm{~cm}^{3} \times 2=128 \mathrm{~cm}^{3}$
The two cubes have the greater volume.

