The density of a material is the mass of 1 cm ³ (or 1 m ³) of the material. It is a measure of the compactness of a material. Density is measured in grams per centimetre cubed (g/cm ³) or kilograms per metre cubed (kg/m ³).
The volume of a three-dimensional shape is a measure of the amount of space or capacity it occupies, eg an average can of fizzy drink has a volume of 330 cm ³ .
The amount of matter an object contains. Mass is measured in kilograms (kg) or grams (g).

Matter	Sub-atomic particles and anything made from them, such as atoms and molecules, are matter. Energy and forces are not matter.
Particle	A general term for a small piece of matter. For example, protons, neutrons, electrons, atoms, ions or molecules.
Displacement	Quantity describing the distance from the start of the journey to the end in a straight line with a described direction, eg 50 km due north of the original position.

Specific heat capacity	The amount of energy needed to raise the temperature of 1 kg of substance by 1°C.	
Specific latent heat	The amount of energy needed to melt or vaporise 1 kg of a substance at its melting or boiling point.	
Conservation of energy	The principle that the total energy of a system stays the same, that energy cannot be created or destroyed (only stored or transferred).	
B B C BITESIZE		

Pressure	Force exerted over an area. The greater the pressure, the greater the force exerted over the same area.
Proportional	When two quantities have the same ratio or relative size. For example, current is proportional to voltage if the current doubles when the voltage is doubled.
Inversely proportional	A relationship between two variables where as one variable increases, the other variable decreases, eg as the volume doubled, the pressure decreased by half.

B B C BITESIZE